
The authors of [6] studied `generalised GHZ states' of the form ,

where for .

They found that according to the variance-based measure. Moreover, it is

possible to probabilistically distil an exact GHZ state of average size just by

local operations. Is this a coincidence, or does it carry over to other classes of states?
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⟨0∣ǫ⟩ = cos ǫ ≈ 1 − ǫ2/2 ǫ≪ 1

N∗ ≈ ǫ2N
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It has been noted already [5] that one can deterministically distil a GHZ state of size

from a cluster state by local projective measurements.O(N)

However, the variance of

any local observable can

only ever scale with .

This is because sums

up all 2-point correlators -

and only neighbouring

regions in a cluster state are

correlated.

N
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We have found this to also be true for ground states of the Kitaev model used to define

the toric code [7].

Should these classes of states be described as macroscopically quantum, despite their

lack of macroscopic fluctuations?

Distilling GHZ states

Small fluctuations but large GHZ

measure x

measure z

GHZ

• We want some way of comparing the states created in different experiments - can

one define an `effective quantum size'?

• In this work, we look in particular at systems of qubits and investigate the

behaviour of quantum macroscopicity under local operations

Interference of large molecules

(e.g. Buckminsterfullerene, C60) [1]

Superposition of different currents in a

superconducting circuit [2]

• The search for quantum behaviour at the macroscopic scale

• States resembling Schrödinger's cat created in experiments:
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Without loss of generality, suppose the outcome is for each measurement.

Then the `distilled' sites end up in a mixed state of the form

where each corresponds to a different set of local errors.

With no errors, the final state would have .

For the state , we find that - so the final state has an

effective size of . This suggests the original state might be called macroscopic.
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Allowing for noisy measurements

Start with the cluster state shown here. As for the

state discussed above, it has according

to the variance measure. A GHZ state of size

can be projected out by the same measurements.

Model the measurements using the generalised

measurement operators

where is a small error parameter.

We look at an example of GHZ distillation with imperfect (noisy) measurements. This

is interesting for two reasons:

• Investigates macroscopicity under a wider set of operations

• One could object that local projective measurements require too much fine

control over the system; errors may accumulate and destroy the macroscopicity
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Greenberger-Horne-Zeilinger (GHZ) states with large provide a natural set of

macroscopic quantum states:

What special properties do these states have that determine their macroscopic

quantum character?

∣GHZN⟩ =
1√
2
(∣0⟩⊗N + ∣1⟩⊗N)

A GHZ state displays a large variance in

the observable:

Classically, one would expect a variance

scaling with .

A set of spin- sites in a state like this

would have highly non-classical

fluctuations in its total magnetisation.
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The following quantity has been proposed as a plausible effective size [5]:

Here, is the set of local observables - sums of local hermitian operators (with a

suitably bounded spectrum). `Local' can include bounded groups of qubits. (We would

then replace with the number of groups.) This measure can be defined for all pure

states - not just superpositions of the form considered above.

One can extend the measure [5] to mixed states by replacing the variance with the

quantum Fisher information . (For pure states, .)

Characterised in this way, macroscopic quantum states are useful for metrology. If a

parameter is encoded on a state via , then a lower limit on the

error in estimating from the state is given by the quantum Cramér-Rao bound:

Macroscopic quantum states, having , achieve the `Heisenberg limit' where

.
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Superpositions of macroscopically distinguishable states

Fluctuations and metrology

∝ Nseparation

outcomeZ

probability

measurement
noise

∣0⟩
⊗N

∣1⟩
⊗N

z Mz

New criteria for macroscopic quantum states
Benjamin Yadin1 and Vlatko Vedral1,2

1 Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
2 Centre for Quantum Technologies, National University of Singapore, Singapore 117543

GHZ states and their macroscopic quantum properties

More generally, a state of the form can be considered macroscopic if and

are macroscopically distinguishable in this sense. A very similar concept is that of

local distinguishability - when one can distinguish between the branches of the

superposition with high probability by measuring a single qubit. [3,4]

The states and are easily

distinguishable by measuring

- an accessible

measurement at the macroscopic

scale. They remain distinguishable

even with noisy measurements.
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Implications

N∗ = O(1)

O(N)

• According to recently proposed measures, quantum macroscopicity can increase

under local projective measurements - and even with imperfect measurements

• This suggests that the set of states classified as macroscopic needs to be extended

• More work is needed to understand the effects of more general types of operations,

and to interpret them
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