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5. Consequences for interference

There are two constraints on the transformations that are possible in a spatial interferometer:

Implications for gbits
Taken together, these constraints imply that for the gbit, the only transformation that may be
applied at the lower branch is the identity matrix. An equivalent argument holds for the upper
branch also, the total set of transformations contains only the identity element.

There are no non-trivial transformations; local interferometry is not possible with gbits.

The Z statistics must not change, as the branches of
the interferometer have split into disjoint regions of
space, and so this would correspond to a particle
jumping from one branch to another.

Branch locality implies that all states on the upper
surface of the state-space Z=+1 must not be
changed by an action on the lower branch (Z=-1).

Uncertainty
We know that in quantum theory, non-trivial interferometry is
possible: from either branch, it should be possible to act on the state-
space with SO(2)! This is possible because quantum theory has an
additional constraint on the state space from the uncertainty relation,
which gains back the freedom to do non-trivial transformations:

Thus we conclude: in order to achieve interference in a universe with a concept of
locality, an uncertainty constraint is required.

<X>2 + <Y>2 + <Z>2 ≤ 1.

From this, we see that at the extremal planes <Z> = ±1, the state space collapses to a single
point, with <X>, <Y> = 0. Even when applying a non-trivial transformation on the bottom
branch, the state in the top branch remains unchanged; quantum interference works as usual.

4. Branch Locality

We propose a locality condition, similar in spirit to non-signalling, called branch locality. If a
system has no probability of being in a particular location, then a transformation applied locally
at that location should have no effect on the state of the system.

When the particle is in the upper branch, any transformation that is
applied to the lower branch must have no effect on any of the
statistics, and vice versa. In a Mach-Zehnder interferometer, the total
set of allowed transformations is formed from the union of sets of
local transformations on each branch, and so this constraint affects the
whole set of allowed local transformations.
Although this statement may sound almost tautological, and should
hold true in any universe with a concept of locality, we find that this
implies profound consequences for the transformations allowed.

A transformation acts on every state in the entire state-space and maps it to another (or
possibly the same) state. The output state-space must be contained within the input state-
space. For reversible transformations, the output and input spaces are exactly the same.

3. Linear Transformations

All transformations within this framework are linear maps, and so may
be expressed as matrices. This is because they respect linearity of
mixing: if one is probabilistically unsure which state was input to the
transformation, the same state should be found after transformation
by mixing the output of each input, as would be found by applying the
transformation to the composite mixed state of the inputs.

If no states are changed by a transformation, it is trivial. This is the
same as multiplying the state as a vector by the identity matrix.

2. Generalised interferometry

The path taken by a particle travelling through a Mach-Zehnder interferometer (above) can be
described as a single bit system. One measurement (Z) states which branch the particle is in.
We label the upper branch Z = +1, and the lower Z = -1. If the particle is entirely in one
branch, the state corresponds to |0> and |1> in quantum theory.

In order to generalise the above experiment into to a general probabilistic theory, we consider
the interferometer as having three operational stages:

Preparation
Envision tuning a dial and pressing a button to release a particle with the
desired set of statistics. In the case of the interferometer, it is useful to
think of the first beamsplitter as part of the preparation process. In the
quantum case, a photon would be emitted in a definite position (Z) state
by the source, and then changed into a superposition (X) state by the
beamsplitter. This composite process is the preparation of an X state.

Transformation
Between the creation and measurement of a state, it is possible to act on
it, such that the statistics of the next measurement will be altered.This
stage of the process is known as transformation. In the quantum
example of the Mach-Zehnder interferometer, adding a phase delay along
either of the paths would be transformation; as would completely
swapping the upper and lower path, or inserting another beam-splitter.

Measurement
The final stage of the experiment is to extract some classical result. As
with preparation, the final beamsplitter can be considered as part of the
measurement process- allowing the experimenter to choose exactly
which measurement he wants to perform on the system.The outcome of
the measurement is determined by the statistics which specify the state.

1 . Introduction to the framework

Classical
The two end points of this line
correspond to when the coin is
known to definitely be in a heads
state (or a tails state).

The connecting line between
shows various states of
uncertainty, with the midpoint
(<Z> = 0) corresponding to total
lack of knowledge about the
coin's state. This state could be
prepared by flipping a fair coin,
and hiding it under a hand before
checking the result. The other
points in this line correspond to
a biased coin in a similar scenario.

Quantum
In this framework, the set of
states a single qubit can take is
represented by the Bloch sphere.

Pure states, which can not be
formed from mixing other states,
lie on the surface. The mixed
states are within.

It can be seen that when the one
measurement outcome is totally
known (such as state |0>, where
<Z> = 1), the outcomes of the
other measurements will be
totally random as <X> = 0, and
<Y> = 0.

Beyond Quantum
A generalised bit (gbit) usually
refers to the extreme case, in
which every possible statistical
state is allowed. In a set of binary
measurements, each expectation
value can take the full range of
[-1,1] independently- and so the
corresponding state space is a
cube.

This incorporates states that are
forbidden in quantum mechanics
by the uncertainty principle, such
as states where the outcome of
the next X and Z measurement
can both be predicted perfectly.

It is possible to take an operational approach to describe the state of a physical system by
listing the complete set of probabilities of the different outcomes of the next measurement
made on the system. In a classical system, the state is uniquely specified by the probabilities
associated with a single measurement, but in general we require more than one measurement.

We can write these statistics as a set of expectation values for binary measurements.We label
the two outputs +1 and -1 for each measurement. The entire state may be written as a vector
such as (<X>, <Y>, <Z>), which we can represent as a geometric point in a Euclidean space.
The set of all possible states allowed by a theory combine to form a state-space.

Any two states in a theory may be combined probabilistically to form a new state with
proportionally combined statistics that will lie on the straight line between the original states in
the state-space. As for every two states in the theory, all states on the line between them must
also be in the theory, this implies all state-spaces in this framework are convex.

The uncertainty principle
enables non-classical dynamics

in an interferometer
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